

# A ONE-POT TWO-STEP MICROWAVE-ASSISTED SYNTHESIS OF N1-SUBSTITUTED 5,6-RING-FUSED 2-PYRIDONES

Marco Radi\*, Gian Paolo Vallerini, Alessia Petrelli, <u>Sabrina Tassini</u>, Paolo Vincetti and Gabriele Costantino

Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124 Parma, Italy





marco.radi@unipr.it





# Introduction

Among the nitrogen-containing hetrocycles, 2-pyridones are extensively studied scaffolds frequently found in natural and pharmaceutical compounds.

Within this family, 5,6-ring-fused derivatives present a wide range of biological activities (e.g. Huperazine A, PJ34, INDOPY-1) and can be used to study diseases such as cognitive disorders, cancer and viral infections<sup>1-3</sup>.

Acetylcholinesterase

inhibitor

PJ34 PARP-1 inhibitor **INDOPY-1** Anti-HIV

# Our optimized one-pot two-step protocol

In order to optimize the protocol, different solvents (DME, EtOH, t-BuOH, DMF), catalysts (Et<sub>3</sub>N, piperidine, AlCl<sub>3.</sub> L-proline), temperatures and reaction times were used<sup>7</sup>. The best results were obtained dividing the reaction in two consecutive steps, in the same reaction vessel according to the following procedure:

$$R_{4}\text{CHO} + CO_{2}\text{Et} \quad L\text{-proline}_{\text{cat}} \quad R_{4} \quad CN \\ S \text{ min} \quad R_{4} \quad CN \\ S \text{ min} \quad R_{4} \quad CN \\ S \text{ min} \quad R_{4} \quad CN \\ R_{4} \quad CN \\ R_{5} \quad R_{$$

# State of the Art

For the synthesis of highly functionalized 2-pyridones two different approaches can be employed:

### Multistep:

Conversion of 4-hydroxy-6methylpyran-2-one ino 4hydroxy-6-methylpyridin-2one, followed by C4 Oalkylation and N1functionalization<sup>4</sup>.

### Limits:

- long reaction time
- expensive purifications

### **Multicomponent**:

Mainly developed and investigated in recent years, allow to quickly generate functionalized 2pyridones derivatives<sup>5</sup>.

- poor versatility
- ✓ unsuitable for ring-fused 2-
- pyridones.

### Limits:

- pyridones
- limited to N1-unsubstituted 2-

# Aim of the work

Development of an efficient protocol for the synthesis of N1substituted 5,6-ring-fused 2-pyridones:

- versatile, starting from commercially available aldehydes, ketones and amines
- fast, using the microwave irradiation
- practical, combining the advantages of multistep protocols (high chemical diversity) and multicomponent reactions (atomand cost-efficiency).





| Entry | Ketone   | Amine               | Aldehyde | Product<br>(Yields 20-65%) | Entry | Ketone | Amine             | Aldehyde       | Product<br>(Yields 20-65%) |
|-------|----------|---------------------|----------|----------------------------|-------|--------|-------------------|----------------|----------------------------|
| 1     |          | BnNH <sub>2</sub>   | PhCHO    | Ph<br>CN<br>NO<br>Bn       | 9     | 0      | BnNH <sub>2</sub> | AcHN           | NHAC<br>CN<br>NO<br>Bn     |
| 2     |          | BnNH <sub>2</sub>   | PhCHO    | Ph<br>CN<br>N<br>O<br>Bn   | 10    | 0      | BnNH <sub>2</sub> | O<br>N         | N CN N O Bn                |
| 3     |          | BnNH <sub>2</sub>   | PhCHO    | Ph<br>CN<br>N<br>Bn        | 11    | 0      | BnNH <sub>2</sub> | O<br>H         | S<br>N<br>O<br>Bn          |
| 4     | 0        | BnNH <sub>2</sub>   | PhCHO    | Ph<br>CN<br>NO<br>Bn       | 12    | 0      | BnNH <sub>2</sub> | H              | CN<br>NO<br>Bn             |
| 5     | <u> </u> | NH <sub>2</sub>     | PhCHO    | Ph<br>CN<br>NO             | 13    | 0      | BnNH <sub>2</sub> | O O H          | O CN<br>N O Bn             |
| 6     | 0        | H <sub>2</sub> N OH | PhCHO    | Ph<br>CN<br>NO<br>HO       | 14    | 0      | BnNH <sub>2</sub> | O <sub>H</sub> | CN<br>NO<br>Bn             |
| 7     | 0        | $H_2N$              | PhCHO    | Ph<br>CN<br>NO             | 15    | 0      | BnNH <sub>2</sub> | O<br>H         | CN<br>NO<br>Bn             |
| 8     | 0        | BnNH <sub>2</sub>   | O H      | Ph                         |       |        |                   |                |                            |

# Preliminary experiments

We were initially inspired by the multicomponent microwave-assisted synthesis of 2amino-3-cyanopyridine published by Shi et al.<sup>6</sup> We have applied this protocol to cyclic ketones but the ring-fused-2-pyridone derivatives were obtained only in trace.

PhCHO

R<sub>2</sub>

2a,b

$$R_3$$
 $R_2$ 
 $R_3$ 
 $R_3$ 
 $R_2$ 
 $R_3$ 
 $R_3$ 
 $R_3$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_4$ 
 $R_4$ 
 $R_4$ 

| Compd      | $R_2$                                  | $R_3$ | $R_4$ | Yield <sup>a</sup> (%) |
|------------|----------------------------------------|-------|-------|------------------------|
| 3a         | Ph                                     | Н     | _     | 80                     |
| <b>3b</b>  | \$                                     |       | _     | 20                     |
| <b>4</b> a | 25                                     |       | Н     | Trace                  |
| 4b         | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |       | Bn    | -                      |

# Conclusions and future perspectives

A practical one-pot, two-step microwave-assisted protocol for the direct synthesis of N1-substituted 5,6-ring-fused 2-pyridones has been developed.

This method proved to be effective on a series of aldehydes, ketones and amines and could be profitably exploited in drug-discovery settings for the rapid identification of biologically relevant hit compounds.

### References

